skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lonsberry, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A control system for bipedal walking in the sagittal plane was developed in simulation. The biped model was built based on anthropometric data for a 1.8 m tall male of average build. At the core of the controller is a deep deterministic policy gradient (DDPG) neural network that was trained in GAZEBO, a physics simulator, to predict the ideal foot placement to maintain stable walking despite external disturbances. The complexity of the DDPG network was decreased through carefully selected state variables and a distributed control system. Additional controllers for the hip joints during their stance phases and the ankle joint during toe-off phase help to stabilize the biped during walking. The simulated biped can walk at a steady pace of approximately 1 m/s, and during locomotion it can maintain stability with a 30 kg·m/s impulse applied forward on the torso or a 40 kg·m/s impulse applied rearward. It also maintains stable walking with a 10 kg backpack or a 25 kg front pack. The controller was trained on a 1.8 m tall model, but also stabilizes models 1.4–2.3 m tall with no changes. 
    more » « less
  2. A control system for simulated two-dimensional bipedal walking was developed. The biped model was built based on anthropometric data. At the core of the control is a Deep Deterministic Policy Gradients (DDPG) neural network that is trained in GAZEBO, a physics simulator, to predict the ideal foot location to maintain stable walking under external impulse load. Additional controllers for hip joint movement during stance phase, and ankle joint torque during toeoff, help to stabilize the robot during walking. The simulated robot can walk at a steady pace of approximately 1m/s, and during locomotion it can maintain stability with a 30N-s impulse applied at the torso. This work implement DDPG algorithm to solve biped walking control problem. The complexity of DDPG network is decreased through carefully selected state variables and distributed control system. 
    more » « less